Materials Informatics II

Materials Informatics II

Software Tools and Databases

Banerjee, Arkaprava; Roy, Kunal

Springer International Publishing AG

04/2025

297

Dura

9783031787270

Pré-lançamento - envio 15 a 20 dias após a sua edição

Descrição não disponível.
Part 1. Introduction.- Introduction to Machine Learning for Predictive Modeling I.- Introduction to Machine Learning for Materials Property Modeling.- Part 2. Cheminformatic and Machine Learning Models for Nanomaterials.- Machine learning models to study electronic properties of metal nanoclusters.- Applications of Machine Learning Predictive Modeling for Carbon Quantum Dots.- Assessing the toxicity of quantum dots in healthy and tumoral cells with ProtoNANO, a platform of nano-QSAR models to predict the toxicity of inorganic nanomaterials.- Applications of predictive modeling for fullerenes.- Computational Analysis of Perovskite Materials AlXY3 (X = Cu, Mn; Y = Br, Cl, F) invoking the DFT Method.- Applications of predictive modeling for dye-sensitized solar cells (DSSCs).- Introduction to multiscale modeling for One Health approaches.- DIAGONAL Decision Support System (DSS) for Advanced Nanomaterial Risk Management powered by Enalos Cloud Platform.- Part 3. Software Tools and Databases for Applications in Materials Science.- Machine Learning algorithms, tools, and databases for applications in Materials Science.- Machine Learning-Driven Web Tools for Predicting Properties of Materials and Molecules.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Predictive Modeling;Machine Learning;Cheminformatics;Nanomaterials;Software tools;Databases