Human Activity Recognition and Anomaly Detection
Human Activity Recognition and Anomaly Detection
4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3-9, 2024, Revised Selected Papers
Li, Ziyue; Suh, Sungho; Wu, Min; Wang, Yizhou; Chen, Zhenghua; Peng, Kuan-Chuan; Yang, Jianfei
Springer Verlag, Singapore
12/2024
148
Mole
9789819790029
Pré-lançamento - envio 15 a 20 dias após a sua edição
.- GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection.
.- CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly Detection.
.- DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning.
.- Dual Memory-guided Probabilistic Model for Weakly-supervised Anomaly Detection.
.- Deep Learning for Human Activity Recognition.
.- Real-Time Human Action Prediction via Pose Kinematics.
.- Uncertainty Awareness for Unsupervised Domain Adaptation on Human Activity Recognition.
.- Deep Interaction Feature Fusion for Robust Human Activity Recognition.
.- How effective are Self-Supervised models for Contact Identification in Videos.
.- A Wearable Multi-Modal Edge-Computing System for Real-Time Kitchen Activity Recognition.
.- GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection.
.- CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly Detection.
.- DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning.
.- Dual Memory-guided Probabilistic Model for Weakly-supervised Anomaly Detection.
.- Deep Learning for Human Activity Recognition.
.- Real-Time Human Action Prediction via Pose Kinematics.
.- Uncertainty Awareness for Unsupervised Domain Adaptation on Human Activity Recognition.
.- Deep Interaction Feature Fusion for Robust Human Activity Recognition.
.- How effective are Self-Supervised models for Contact Identification in Videos.
.- A Wearable Multi-Modal Edge-Computing System for Real-Time Kitchen Activity Recognition.