Geometry of Deep Learning

Geometry of Deep Learning

A Signal Processing Perspective

Ye, Jong Chul

Springer Verlag, Singapore

01/2023

330

Mole

Inglês

9789811660481

15 a 20 dias

534

Descrição não disponível.
Part I Basic Tools for Machine Learning: 1. Mathematical Preliminaries.- 2. Linear and Kernel Classifiers.- 3. Linear, Logistic, and Kernel Regression.- 4. Reproducing Kernel Hilbert Space, Representer Theorem.- Part II Building Blocks of Deep Learning: 5. Biological Neural Networks.- 6. Artificial Neural Networks and Backpropagation.- 7. Convolutional Neural Networks.- 8. Graph Neural Networks.- 9. Normalization and Attention.- Part III Advanced Topics in Deep Learning.- 10. Geometry of Deep Neural Networks.- 11. Deep Learning Optimization.- 12. Generalization Capability of Deep Learning.- 13. Generative Models and Unsupervised Learning.- Summary and Outlook.- Bibliography.- Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Deep learning;Mathematical principle of deep learning;Geometric understanding of deep neural network;Review of state-of-the art deep learning methods;Optimal transport