Explainable Machine Learning for Geospatial Data Analysis

Explainable Machine Learning for Geospatial Data Analysis

A Data-Centric Approach

Kamusoko, Courage

Taylor & Francis Ltd

12/2024

266

Dura

9781032503806

Pré-lançamento - envio 15 a 20 dias após a sua edição

Descrição não disponível.
Part I: Introduction. 1. Challenges and Opportunities. Part II: Foundations. 2. An Introduction to Explainable Machine Learning. 3. Approaches to Explainable Machine Learning. 4. Approaches to Explainable Deep Learning. 5. Landslide Susceptibility Modeling Using a Logistic Regression Model. Part III: Techniques and Applications. 6. Urban Land Cover Classification Using Earth Observation (EO) Data and Machine Learning Models. 7. Modeling Forest Canopy Height Using Earth Observation (EO) Data and Machine Learning Models. 8. Modeling Aboveground Biomass Density Using Earth Observation (EO) Data and Machine Learning Models. 9. Explainable Deep Learning for Mapping Building Footprints Using High-Resolution Imagery. 10. Towards Explainable AI and Data-Centric Approaches for Geospatial Data Analysis. 11. Appendix.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Logistic Regression, Decision Trees, Support Vector Machines, Random Forests;Deep Convolutional Neural Networks (CNN);Geospatial Modeling, Landslide Susceptibility Modeling;Modeling Forest Canopy Height, Above-Ground Biomass (AGB);Land Cover Classification;R, Python