Differential Equations and Population Dynamics I

Differential Equations and Population Dynamics I

Introductory Approaches

Griette, Quentin; Liu, Zhihua; Ducrot, Arnaud; Magal, Pierre; Webb, Glenn; Demongeot, Jacques

Springer Nature Switzerland AG

06/2022

458

Mole

Inglês

9783030981358

15 a 20 dias

730

Descrição não disponível.
Part I Linear Differential and Difference Equations: 1 Introduction to Linear Population Dynamics.- 2 Existence and Uniqueness of Solutions.- 3 Stability and Instability of Linear.- 4 Positivity and Perron-Frobenius's Theorem.- Part II Non-Linear Differential and Difference Equations: 5 Nonlinear Differential Equation.- 6 Omega and Alpha Limit.- 7 Global Attractors and Uniformly.- 8 Linearized Stability Principle and Hartman-Grobman's Theorem.- 9 Positivity and Invariant Sub-region.- 10 Monotone semiflows.- 11 Logistic Equations with Diffusion.- 12 The Poincare-Bendixson and Monotone Cyclic Feedback Systems.- 13 Bifurcations.- 14 Center Manifold Theory and Center Unstable Manifold Theory.- 15 Normal Form Theory.- Part III Applications in Population Dynamics: 16 A Holling's Predator-prey Model with Handling and Searching Predators.- 17 Hopf Bifurcation for a Holling's Predator-prey Model with Handling and Searching Predators.- 18 Epidemic Models with COVID-19.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
differential equations;difference equations;linear population dynamics;non-linear population dynamics;predator prey system;epidemic modelling