Biophysical Chemistry
portes grátis
Biophysical Chemistry
Rudolph, Markus G.; Klostermeier, Dagmar
Taylor & Francis Ltd
01/2025
930
Dura
9781032060835
Pré-lançamento - envio 15 a 20 dias após a sua edição
Descrição não disponível.
Chapter 1: Systems, state functions, and the laws of thermodynamics. Chapter 2: Energetics and chemical equilibria. Chapter 3: Statistical thermodynamics. Chapter 4: Thermodynamics of transport processes. Chapter 5: Electrochemistry. Chapter 6: Reaction velocities and rate laws. Chapter 7: Integrated rate laws for uni- and bimolecular reactions. Chapter 8: Reaction Types. Chapter 9: Deriving integrated rate laws by solving sets of differential equations with matrix algebra. Chapter 10: Rate-limiting steps. Chapter 11: Binding reactions: one-step and two-step binding. Chapter 12: Single-molecule kinetics. Chapter 13: Steady-state (enzyme) kinetics. Chapter 14: Complex reaction schemes and their analysis. Chapter 15: Temperature dependence of rate constants. Chapter 16: Principles of catalysis. Chapter 17: Molecular Structure and Interactions. Chapter 18: Proteins. Chapter 19: Nucleic Acids. Chapter 20: Macromolecular Modeling. Chapter 21: Optical Spectroscopy. Chapter 22: Magnetic Resonance. Chapter 23: Solution Scattering. Chapter 24: Crystallography. Chapter 25: Fluorescence Imaging and Microscopy. Chapter 26: Electron Microscopy. Chapter 27: Scanning Probe Microscopy and Force Measurements. Chapter 28: Transient Kinetic Methods. Chapter 29: Molecular Mass, Size, and Shape. Chapter 30: Calorimetry. Chapter 31: Mathematical Concepts Used in this Book. Chapter 32: Prefixes, Units, Constants.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Markus G. Rudolph
Chapter 1: Systems, state functions, and the laws of thermodynamics. Chapter 2: Energetics and chemical equilibria. Chapter 3: Statistical thermodynamics. Chapter 4: Thermodynamics of transport processes. Chapter 5: Electrochemistry. Chapter 6: Reaction velocities and rate laws. Chapter 7: Integrated rate laws for uni- and bimolecular reactions. Chapter 8: Reaction Types. Chapter 9: Deriving integrated rate laws by solving sets of differential equations with matrix algebra. Chapter 10: Rate-limiting steps. Chapter 11: Binding reactions: one-step and two-step binding. Chapter 12: Single-molecule kinetics. Chapter 13: Steady-state (enzyme) kinetics. Chapter 14: Complex reaction schemes and their analysis. Chapter 15: Temperature dependence of rate constants. Chapter 16: Principles of catalysis. Chapter 17: Molecular Structure and Interactions. Chapter 18: Proteins. Chapter 19: Nucleic Acids. Chapter 20: Macromolecular Modeling. Chapter 21: Optical Spectroscopy. Chapter 22: Magnetic Resonance. Chapter 23: Solution Scattering. Chapter 24: Crystallography. Chapter 25: Fluorescence Imaging and Microscopy. Chapter 26: Electron Microscopy. Chapter 27: Scanning Probe Microscopy and Force Measurements. Chapter 28: Transient Kinetic Methods. Chapter 29: Molecular Mass, Size, and Shape. Chapter 30: Calorimetry. Chapter 31: Mathematical Concepts Used in this Book. Chapter 32: Prefixes, Units, Constants.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.