First Course in Machine Learning
portes grátis
First Course in Machine Learning
Girolami, Mark; Rogers, Simon
Taylor & Francis Ltd
06/2020
428
Mole
Inglês
9780367574642
15 a 20 dias
607
Descrição não disponível.
Linear Modelling: A Least Squares Approach. Linear Modelling: A Maximum Likelihood Approach. The Bayesian Approach to Machine Learning. Bayesian Inference. Classification. Clustering. Principal Components Analysis and Latent Variable Models. Further Topics in Markov Chain Monte Carlo. Classification and Regression with Gaussian Processes. Dirichlet Process models.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
MATLAB Script;Posterior Density;Machine Learning;Gibbs Sampling;machine learning algorithms;Laplace Approximation;model specifications;Marginal Likelihood;parameter values;Mixture Models;least squares;GP Prior;Linear modeling;Decision Boundaries;Maximum Likelihood;Coin Toss;Bayesian Inference;Latent Dirichlet Allocation;classifiers;Coin Landing Heads;clustering;Random Variables;Principal components analysis;Training Points;Latent variable models;Covariance Matrix;Posterior Probability;Multivariate Gaussian;Map Solution;Infinite Mixture Model;HDPs;Proposal Density;Conditional Distributions;True Posterior;Approximate Posterior;Class Conditional Distributions;Standard Mixture Model
Linear Modelling: A Least Squares Approach. Linear Modelling: A Maximum Likelihood Approach. The Bayesian Approach to Machine Learning. Bayesian Inference. Classification. Clustering. Principal Components Analysis and Latent Variable Models. Further Topics in Markov Chain Monte Carlo. Classification and Regression with Gaussian Processes. Dirichlet Process models.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
MATLAB Script;Posterior Density;Machine Learning;Gibbs Sampling;machine learning algorithms;Laplace Approximation;model specifications;Marginal Likelihood;parameter values;Mixture Models;least squares;GP Prior;Linear modeling;Decision Boundaries;Maximum Likelihood;Coin Toss;Bayesian Inference;Latent Dirichlet Allocation;classifiers;Coin Landing Heads;clustering;Random Variables;Principal components analysis;Training Points;Latent variable models;Covariance Matrix;Posterior Probability;Multivariate Gaussian;Map Solution;Infinite Mixture Model;HDPs;Proposal Density;Conditional Distributions;True Posterior;Approximate Posterior;Class Conditional Distributions;Standard Mixture Model