Women in Commutative Algebra

Women in Commutative Algebra

Proceedings of the 2019 WICA Workshop

Miller, Claudia; Witt, Emily E.; Striuli, Janet

Springer Nature Switzerland AG

03/2022

437

Dura

Inglês

9783030919856

15 a 20 dias

834

Descrição não disponível.
On Gerko's Strongly Tor-independent Modules (H. Altmann).- Properties of the Toric Rings of a Chordal Bipartite Family of Graphs (L. Ballard).- An illustrated view of differential operators of a reduced quotient of an affine semigroup ring (C. Berkesch).- A hypergraph characterization of nearly complete intersections (R. Gibbons).- The Shape Of Hilbert-Kunz Functions (C-Y. Jean Chan).- Standard monomial theory and toric degenerations of Richardson varieties in flag varieties (F. Mohammadi).- Simplicial resolutions for the second power of square-free monomial ideals (S. Faridi).- Cohen-Macaulay fiber cones and defining ideal of Rees algebras of modules (A. Costantini).- Principal Matrices of Numerical Semigroups (H. Srinivasan).- A survey on the Koszul homology algebra (N. Diethorn).- Canonical Resolutions over Koszul Algebras (A. Seceleanu).- Well Ordered Covers, Simplicial Bouquets, and Subadditivity of Betti Numbers of Square-Free Monomial Ideals (S. Farid).- A survey on the Eisenbud-Green-Harris Conjecture (S. Guentuerkuen).- The variety defined by the matrix of diagonals is f-pure (Z. Kadyrsizova).- Classification of Frobenius Forms in five variables (E. Witt).- Projective dimension of hypergraphs (Kuei-Nuan Lin).- A truncated minimal free resolution of the residue field (O. Veliche).
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
combinatorics;differential operators;methods in prime characteristic;Rees algebras;tropical commutative algebra;Koszul algebras;Sather- Wagstaff;DG algebras;Strongly Tor-independent modules;Berkesch: differential operators;C. Gibbons: complete intersections;Hilbert-Kunz multiplicity;Harder-Narasimhan filtration;local Riemann-Roch formula;Cohen-Macaulay cone;Ehrhart's theorem;Zhibek: Frobenius