Homomorphic Encryption for Data Science (HE4DS)

Homomorphic Encryption for Data Science (HE4DS)

Soceanu, Omri; Adir, Allon; Levy, Ronen; Aharoni, Ehud; Shaul, Hayim; Drucker, Nir

Springer International Publishing AG

12/2024

304

Dura

9783031654930

Pré-lançamento - envio 15 a 20 dias após a sua edição

Descrição não disponível.
Part I Introduction and Basic Homomorphic Encryption (HE) Concepts.- Chapter 1 Introduction to Data Science.- Chapter 2 Modern Homomorphic Encryption - Introduction.- Chapter 3 Modern HE - Security Models.- Chapter 4 Approaches for Writing HE Applications.- Part II Approximations.- Chapter 5 Approximation Methods Part I: A General Overview.- Chapter 6 Approximation Methods Part II: Approximations of Standard Functions.- Part III Packing Methods.- Chapter 7 SIMD Packing Part I: Basic Packing Techniques.- Chapter 8 SIMD Packing Part II - Tile Tensor Basics.- Chapter 9 SIMD Packing Part III: Advanced Tile Tensors.- Part IV Use Cases and Other Approaches.- Chapter 10 Privacy-Preserving Machine Learning with HE.- Chapter 11 Case Study: Neural Network.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Encrypted models;Secure machine learning as a service (MLaaS);Applied cryptography;Homomorphic encryption (HE);Single instruction multiple data (SIMD);Packing methods;Tile tensors;Approximated computations;Cloud-based trust-models