Entropy and Free Energy in Structural Biology

Entropy and Free Energy in Structural Biology

From Thermodynamics to Statistical Mechanics to Computer Simulation

Meirovitch, Hagai

Taylor & Francis Ltd

04/2022

374

Mole

Inglês

9780367427450

15 a 20 dias

730

Descrição não disponível.
Contents

Preface ..................................................................................................................................................... xv

Acknowledgments ...................................................................................................................................xix

Author .....................................................................................................................................................xxi

Section I Probability Theory

1. Probability and Its Applications ..................................................................................................... 3

1.1 Introduction ............................................................................................................................. 3

1.2 Experimental Probability ........................................................................................................ 3

1.3 The Sample Space Is Related to the Experiment .................................................................... 4

1.4 Elementary Probability Space ................................................................................................ 5

1.5 Basic Combinatorics ............................................................................................................... 6

1.5.1 Permutations ............................................................................................................. 6

1.5.2 Combinations ............................................................................................................ 7

1.6 Product Probability Spaces ..................................................................................................... 9

1.6.1 The Binomial Distribution .......................................................................................11

1.6.2 Poisson Theorem ......................................................................................................11

1.7 Dependent and Independent Events ...................................................................................... 12

1.7.1 Bayes Formula......................................................................................................... 12

1.8 Discrete Probability-Summary .......................................................................................... 13

1.9 One-Dimensional Discrete Random Variables ..................................................................... 13

1.9.1 The Cumulative Distribution Function ....................................................................14

1.9.2 The Random Variable of the Poisson Distribution ..................................................14

1.10 Continuous Random Variables ..............................................................................................14

1.10.1 The Normal Random Variable ................................................................................ 15

1.10.2 The Uniform Random Variable .............................................................................. 15

1.11 The Expectation Value ...........................................................................................................16

1.11.1 Examples ..................................................................................................................16

1.12 The Variance ..........................................................................................................................17

1.12.1 The Variance of the Poisson Distribution ................................................................18

1.12.2 The Variance of the Normal Distribution ................................................................18

1.13 Independent and Uncorrelated Random Variables ............................................................... 19

1.13.1 Correlation .............................................................................................................. 19

1.14 The Arithmetic Average ....................................................................................................... 20

1.15 The Central Limit Theorem .................................................................................................. 21

1.16 Sampling ............................................................................................................................... 23

1.17 Stochastic Processes-Markov Chains ................................................................................ 23

1.17.1 The Stationary Probabilities ................................................................................... 25

1.18 The Ergodic Theorem ........................................................................................................... 26

1.19 Autocorrelation Functions .................................................................................................... 27

1.19.1 Stationary Stochastic Processes .............................................................................. 28

Homework for Students .................................................................................................................... 28

A Comment about Notations ............................................................................................................ 28

References ........................................................................................................................................ 29

Section II Equilibrium Thermodynamics and Statistical Mechanics

2. Classical Thermodynamics ........................................................................................................... 33

2.1 Introduction ........................................................................................................................... 33

2.2 Macroscopic Mechanical Systems versus Thermodynamic Systems .................................. 33

2.3 Equilibrium and Reversible Transformations ....................................................................... 34

2.4 Ideal Gas Mechanical Work and Reversibility ..................................................................... 34

2.5 The First Law of Thermodynamics ...................................................................................... 36

2.6 Joule's Experiment ................................................................................................................ 37

2.7 Entropy .................................................................................................................................. 39

2.8 The Second Law of Thermodynamics .................................................................................. 40

2.8.1 Maximal Entropy in an Isolated System..................................................................41

2.8.2 Spontaneous Expansion of an Ideal Gas and Probability ....................................... 42

2.8.3 Reversible and Irreversible Processes Including Work ........................................... 42

2.9 The Third Law of Thermodynamics .................................................................................... 43

2.10 Thermodynamic Potentials ................................................................................................... 43

2.10.1 The Gibbs Relation ................................................................................................. 43

2.10.2 The Entropy as the Main Potential ......................................................................... 44

2.10.3 The Enthalpy ........................................................................................................... 45

2.10.4 The Helmholtz Free Energy .................................................................................... 45

2.10.5 The Gibbs Free Energy ........................................................................................... 45

2.10.6 The Free Energy, H(T,?) ........................................................................................ 46

2.11 Maximal Work in Isothermal and Isobaric Transformations ............................................... 47

2.12 Euler's Theorem and Additional Relations for the Free Energies ........................................ 48

2.12.1 Gibbs-Duhem Equation .......................................................................................... 49

2.13 Summary ............................................................................................................................... 49

Homework for Students .................................................................................................................... 49

References ........................................................................................................................................ 49

Further Reading ................................................................................................................................ 49

3. From Thermodynamics to Statistical Mechanics ........................................................................51

3.1 Phase Space as a Probability Space .......................................................................................51

3.2 Derivation of the Boltzmann Probability ............................................................................. 52

3.3 Statistical Mechanics Averages ............................................................................................ 54

3.3.1 The Average Energy ................................................................................................ 54

3.3.2 The Average Entropy .............................................................................................. 54

3.3.3 The Helmholtz Free Energy .................................................................................... 55

3.4 Various Approaches for Calculating Thermodynamic Parameters ...................................... 55

3.4.1 Thermodynamic Approach ..................................................................................... 55

3.4.2 Probabilistic Approach ........................................................................................... 56

3.5 The Helmholtz Free Energy of a Simple Fluid ..................................................................... 56

Reference .......................................................................................................................................... 58

Further Reading ................................................................................................................................ 58

4. Ideal Gas and the Harmonic Oscillator ....................................................................................... 59

4.1 From a Free Particle in a Box to an Ideal Gas ...................................................................... 59

4.2 Properties of an Ideal Gas by the Thermodynamic Approach ............................................. 60

4.3 The chemical potential of an Ideal Gas ................................................................................ 62

4.4 Treating an Ideal Gas by the Probability Approach ............................................................. 63

4.5 The Macroscopic Harmonic Oscillator ................................................................................ 64

4.6 The Microscopic Oscillator .................................................................................................. 65

4.6.1 Partition Function and Thermodynamic Properties ............................................... 66

4.7 The Quantum Mechanical Oscillator ................................................................................... 68

4.8 Entropy and Information in Statistical Mechanics ............................................................... 71

4.9 The Configurational Partition Function ................................................................................ 71

Homework for Students .................................................................................................................... 72

References ........................................................................................................................................ 72

Further Reading ................................................................................................................................ 72

5. Fluctuations and the Most Probable Energy ............................................................................... 73

5.1 The Variances of the Energy and the Free Energy ............................................................... 73

5.2 The Most Contributing Energy E* ....................................................................................... 74

5.3 Solving Problems in Statistical Mechanics .......................................................................... 76

5.3.1 The Thermodynamic Approach .............................................................................. 77

5.3.2 The Probabilistic Approach .................................................................................... 78

5.3.3 Calculating the Most Probable Energy Term .......................................................... 79

5.3.4 The Change of Energy and Entropy with Temperature .......................................... 80

References ........................................................................................................................................ 81

6. Various Ensembles ......................................................................................................................... 83

6.1 The Microcanonical (petit) Ensemble .................................................................................. 83

6.2 The Canonical (NVT) Ensemble ........................................................................................... 84

6.3 The Gibbs (NpT) Ensemble .................................................................................................. 85

6.4 The Grand Canonical (?VT) Ensemble ................................................................................ 88

6.5 Averages and Variances in Different Ensembles .................................................................. 90

6.5.1 A Canonical Ensemble Solution (Maximal Term Method) .................................... 90

6.5.2 A Grand-Canonical Ensemble Solution .................................................................. 91

6.5.3 Fluctuations in Different Ensembles....................................................................... 91

References ........................................................................................................................................ 92

Further Reading ................................................................................................................................ 92

7. Phase Transitions ........................................................................................................................... 93

7.1 Finite Systems versus the Thermodynamic Limit ................................................................ 93

7.2 First-Order Phase Transitions ............................................................................................... 94

7.3 Second-Order Phase Transitions ........................................................................................... 95

References ........................................................................................................................................ 98

8. Ideal Polymer Chains ..................................................................................................................... 99

8.1 Models of Macromolecules ................................................................................................... 99

8.2 Statistical Mechanics of an Ideal Chain ............................................................................... 99

8.2.1 Partition Function and Thermodynamic Averages ............................................... 100

8.3 Entropic Forces in an One-Dimensional Ideal Chain..........................................................101

8.4 The Radius of Gyration ...................................................................................................... 104

8.5 The Critical Exponent ? ...................................................................................................... 105

8.6 Distribution of the End-to-End Distance ............................................................................ 106

8.6.1 Entropic Forces Derived from the Gaussian Distribution .................................... 107

8.7 The Distribution of the End-to-End Distance Obtained from the Central Limit Theorem .... 108

8.8 Ideal Chains and the Random Walk ................................................................................... 109

8.9 Ideal Chain as a Model of Reality .......................................................................................110

References .......................................................................................................................................110

9. Chains with Excluded Volume .....................................................................................................111

9.1 The Shape Exponent ? for Self-avoiding Walks ..................................................................111

9.2 The Partition Function .........................................................................................................112

9.3 Polymer Chain as a Critical System ....................................................................................113

9.4 Distribution of the End-to-End Distance .............................................................................114

9.5 The Effect of Solvent and Temperature on the Chain Size .................................................115

9.5.1 ? Chains in d = 3 ...................................................................................................116

9.5.2 ? Chains in d = 2 ...................................................................................................116

9.5.3 The Crossover Behavior Around ?.........................................................................117

9.5.4 The Blob Picture ....................................................................................................118

9.6 Summary ..............................................................................................................................119

References .......................................................................................................................................119

Section III Topics in Non-Equilibrium Thermodynamics

and Statistical Mechanics

10. Basic Simulation Techniques: Metropolis Monte Carlo and Molecular Dynamics .............. 123

10.1 Introduction ......................................................................................................................... 123

10.2 Sampling the Energy and Entropy and New Notations ...................................................... 124

10.3 More About Importance Sampling ..................................................................................... 125

10.4 The Metropolis Monte Carlo Method ................................................................................. 126

10.4.1 Symmetric and Asymmetric MC Procedures ....................................................... 127

10.4.2 A Grand-Canonical MC Procedure ...................................................................... 128

10.5 Efficiency of Metropolis MC .............................................................................................. 129

10.6 Molecular Dynamics in the Microcanonical Ensemble ......................................................131

10.7 MD Simulations in the Canonical Ensemble ...................................................................... 134

10.8 Dynamic MD Calculations ..................................................................................................135

10.9 Efficiency of MD .................................................................................................................135

10.9.1 Periodic Boundary Conditions and Ewald Sums .................................................. 136

10.9.2 A Comment About MD Simulations and Entropy................................................ 136

References ...................................................................................................................................... 137

11. Non-Equilibrium Thermodynamics-Onsager Theory .......................................................... 139

11.1 Introduction ......................................................................................................................... 139

11.2 The Local-Equilibrium Hypothesis .................................................................................... 139

11.3 Entropy Production Due to Heat Flow in a Closed System ................................................ 140

11.4 Entropy Production in an Isolated System...........................................................................141

11.5 Extra Hypothesis: A Linear Relation Between Rates and Affinities ..................................142

11.5.1 Entropy of an Ideal Linear Chain Close to Equilibrium .......................................143

11.6 Fourier's Law-A Continuum Example of Linearity ......................................................... 144

11.7 Statistical Mechanics Picture of Irreversibility ...................................................................145

11.8 Time Reversal, Microscopic Reversibility, and the Principle of Detailed Balance ............147

11.9 Onsager's Reciprocal Relations ...........................................................................................149

11.10 Applications ........................................................................................................................ 150

11.11 Steady States and the Principle of Minimum Entropy Production .....................................151

11.12 Summary ..............................................................................................................................152

References .......................................................................................................................................152

12. Non-equilibrium Statistical Mechanics ......................................................................................153

12.1 Fick's Laws for Diffusion ....................................................................................................153

12.1.1 First Fick's Law ......................................................................................................153

12.1.2 Calculation of the Flux from Thermodynamic Considerations ............................ 154

12.1.3 The Continuity Equation ........................................................................................155

12.1.4 Second Fick's Law-The Diffusion Equation ...................................................... 156

12.1.5 Diffusion of Particles Through a Membrane ........................................................ 156

12.1.6 Self-Diffusion ........................................................................................................ 156

12.2 Brownian Motion: Einstein's Derivation of the Diffusion Equation .................................. 158

12.3 Langevin Equation .............................................................................................................. 160

12.3.1 The Average Velocity and the Fluctuation-Dissipation Theorem .........................162

12.3.2 Correlation Functions.............................................................................................163

12.3.3 The Displacement of a Langevin Particle ............................................................. 164

12.3.4 The Probability Distributions of the Velocity and the Displacement ................... 166

12.3.5 Langevin Equation with a Charge in an Electric Field ..........................................168

12.3.6 Langevin Equation with an External Force-The Strong Damping Velocity .......168

12.4 Stochastic Dynamics Simulations .......................................................................................169

12.4.1 Generating Numbers from a Gaussian Distribution by CLT .................................170

12.4.2 Stochastic Dynamics versus Molecular Dynamics................................................171

12.5 The Fokker-Planck Equation ...............................................................................................171

12.6 Smoluchowski Equation.......................................................................................................174

12.7 The Fokker-Planck Equation for a Full Langevin Equation with a Force...........................175

12.8 Summary of Pairs of Equations ...........................................................................................175

References .......................................................................................................................................176

13. The Master Equation ....................................................................................................................177

13.1 Master Equation in a Microcanonical System .....................................................................177

13.2 Master Equation in the Canonical Ensemble.......................................................................178

13.3 An Example from Magnetic Resonance ............................................................................. 180

13.3.1 Relaxation Processes Under Various Conditions ...................................................181

13.3.2 Steady State and the Rate of Entropy Production ................................................. 184

13.4 The Principle of Minimum Entropy Production-Statistical Mechanics Example............185

References .......................................................................................................................................186

Section IV Advanced Simulation Methods: Polymers

and Biological Macromolecules

14. Growth Simulation Methods for Polymers .................................................................................189

14.1 Simple Sampling of Ideal Chains ........................................................................................189

14.2 Simple Sampling of SAWs .................................................................................................. 190

14.3 The Enrichment Method ..................................................................................................... 192

14.4 The Rosenbluth and Rosenbluth Method ............................................................................ 193

14.5 The Scanning Method ......................................................................................................... 195

14.5.1 The Complete Scanning Method .......................................................................... 195

14.5.2 The Partial Scanning Method ............................................................................... 196

14.5.3 Treating SAWs with Finite Interactions ................................................................ 197

14.5.4 A Lower Bound for the Entropy ........................................................................... 197

14.5.5 A Mean-Field Parameter ....................................................................................... 198

14.5.6 Eliminating the Bias by Schmidt's Procedure ...................................................... 199

14.5.7 Correlations in the Accepted Sample ................................................................... 200

14.5.8 Criteria for Efficiency ........................................................................................... 201

14.5.9 Locating Transition Temperatures ........................................................................ 202

14.5.10 The Scanning Method versus Other Techniques .................................................. 203

14.5.11 The Stochastic Double Scanning Method ............................................................ 204

14.5.12 Future Scanning by Monte Carlo .......................................................................... 204

14.5.13 The Scanning Method for the Ising Model and Bulk Systems ............................. 205

14.6 The Dimerization Method .................................................................................................. 206

References ...................................................................................................................................... 208

15. The Pivot Algorithm and Hybrid Techniques ............................................................................211

15.1 The Pivot Algorithm-Historical Notes ..............................................................................211

15.2 Ergodicity and Efficiency ....................................................................................................211

15.3 Applicability ........................................................................................................................212

15.4 Hybrid and Grand-Canonical Simulation Methods .............................................................213

15.5 Concluding Remarks ............................................................................................................214

References .......................................................................................................................................214

16. Models of Proteins .........................................................................................................................217

16.1 Biological Macromolecules versus Polymers ......................................................................217

16.2 Definition of a Protein Chain ...............................................................................................217

16.3 The Force Field of a Protein ................................................................................................218

16.4 Implicit Solvation Models ....................................................................................................219

16.5 A Protein in an Explicit Solvent ......................................................................................... 220

16.6 Potential Energy Surface of a Protein ................................................................................ 221

16.7 The Problem of Protein Folding ......................................................................................... 222

16.8 Methods for a Conformational Search ................................................................................ 222

16.8.1 Local Minimization-The Steepest Descents Method ........................................ 223

16.8.2 Monte Carlo Minimization ................................................................................... 224

16.8.3 Simulated Annealing ............................................................................................ 225

16.9 Monte Carlo and Molecular Dynamics Applied to Proteins .............................................. 225

16.10 Microstates and Intermediate Flexibility ........................................................................... 226

16.10.1 On the Practical Definition of a Microstate .......................................................... 227

References ...................................................................................................................................... 227

17. Calculation of the Entropy and the Free Energy by Thermodynamic Integration ................231

17.1 "Calorimetric" Thermodynamic Integration ...................................................................... 232

17.2 The Free Energy Perturbation Formula .............................................................................. 232

17.3 The Thermodynamic Integration Formula of Kirkwood ................................................... 234

17.4 Applications ........................................................................................................................ 235

17.4.1 Absolute Entropy of a SAW Integrated from an Ideal Chain Reference State ..... 235

17.4.2 Harmonic Reference State of a Peptide ................................................................ 237

17.5 Thermodynamic Cycles ...................................................................................................... 237

17.5.1 Other Cycles .......................................................................................................... 240

17.5.2 Problems of TI and FEP Applied to Proteins ....................................................... 240

References ...................................................................................................................................... 241

18. Direct Calculation of the Absolute Entropy and Free Energy ................................................ 243

18.1 Absolute Free Energy from E/kBT]> ...................................................................... 243

18.2 The Harmonic Approximation ........................................................................................... 244

18.3 The M2 Method .................................................................................................................. 245

18.4 The Quasi-Harmonic Approximation ................................................................................. 246

18.5 The Mutual Information Expansion ................................................................................... 247

18.6 The Nearest Neighbor Technique ....................................................................................... 248

18.7 The MIE-NN Method ......................................................................................................... 249

18.8 Hybrid Approaches ............................................................................................................. 249

References ...................................................................................................................................... 249

19. Calculation of the Absolute Entropy from a Single Monte Carlo Sample...............................251

19.1 The Hypothetical Scanning (HS) Method for SAWs ...........................................................251

19.1.1 An Exact HS Method .............................................................................................251

19.1.2 Approximate HS Method ...................................................................................... 252

19.2 The HS Monte Carlo (HSMC) Method .............................................................................. 253

19.3 Upper Bounds and Exact Functionals for the Free Energy ................................................ 255

19.3.1 The Upper Bound FB ............................................................................................ 255

19.3.2 FB Calculated by the Reversed Schmidt Procedure ............................................. 256

19.3.3 A Gaussian Estimation of FB ................................................................................ 257

19.3.4 Exact Expression for the Free Energy .................................................................. 258

19.3.5 The Correlation Between ?A and FA ..................................................................... 258

19.3.6 Entropy Results for SAWs on a Square Lattice .................................................... 259

19.4 HS and HSMC Applied to the Ising Model ........................................................................ 260

19.5 The HS and HSMC Methods for a Continuum Fluid ..........................................................261

19.5.1 The HS Method ......................................................................................................261

19.5.2 The HSMC Method ............................................................................................... 262

19.5.3 Results for Argon and Water ................................................................................. 264

19.5.3.1 Results for Argon .................................................................................. 264

19.5.3.2 Results for Water .................................................................................. 266

19.6 HSMD Applied to a Peptide ............................................................................................... 266

19.6.1 Applications .......................................................................................................... 269

19.7 The HSMD-TI Method ....................................................................................................... 269

19.8 The LS Method ................................................................................................................... 270

19.8.1 The LS Method Applied to the Ising Model ......................................................... 270

19.8.2 The LS Method Applied to a Peptide ................................................................... 272

References .......................................................................................................................................274

20. The Potential of Mean Force, Umbrella Sampling, and Related Techniques ........................ 277

20.1 Umbrella Sampling ............................................................................................................. 277

20.2 Bennett's Acceptance Ratio ................................................................................................ 278

20.3 The Potential of Mean Force .............................................................................................. 281

20.3.1 Applications .......................................................................................................... 284

20.4 The Self-Consistent Histogram Method ............................................................................. 285

20.4.1 Free Energy from a Single Simulation.................................................................. 286

20.4.2 Multiple Simulations and The Self-Consistent Procedure.................................... 286

20.5 The Weighted Histogram Analysis Method ....................................................................... 289

20.5.1 The Single Histogram Equations .......................................................................... 290

20.5.2 The WHAM Equations ..........................................................................................291

20.5.3 Enhancements of WHAM .................................................................................... 293

20.5.4 The Basic MBAR Equation .................................................................................. 295

20.5.5 ST-WHAM and UIM ............................................................................................ 296

20.5.6 Summary ............................................................................................................... 296

References ...................................................................................................................................... 297

21. Advanced Simulation Methods and Free Energy Techniques ................................................. 301

21.1 Replica-Exchange ............................................................................................................... 301

21.1.1 Temperature-Based REM ..................................................................................... 301

21.1.2 Hamiltonian-Dependent Replica Exchange .......................................................... 305

21.2 The Multicanonical Method ............................................................................................... 308

21.2.1 Applications ...........................................................................................................311

21.2.2 MUCA-Summary ..................................................................................................312

21.3 The Method of Wang and Landau .......................................................................................312

21.3.1 The Wang and Landau Method-Applications ........................................................314

21.4 The Method of Expanded Ensembles ..................................................................................315

21.4.1 The Method of Expanded Ensembles-Applications ..............................................317

21.5 The Adaptive Integration Method .......................................................................................317

21.6 Methods Based on Jarzynski's Identity ...............................................................................319

21.6.1 Jarzynski's Identity versus Other Methods for Calculating ?F ........................... 323

21.7 Summary ............................................................................................................................. 324

References ...................................................................................................................................... 324

22. Simulation of the Chemical Potential ..........................................................................................331

22.1 The Widom Insertion Method .............................................................................................331

22.2 The Deletion Procedure .......................................................................................................332

22.3 Personage's Method for Treating Deletion ......................................................................... 334

22.4 Introduction of a Hard Sphere ............................................................................................ 336

22.5 The Ideal Gas Gauge Method ............................................................................................. 337

22.6 Calculation of the Chemical Potential of a Polymer by the Scanning Method .................. 338

22.7 The Incremental Chemical Potential Method for Polymers ............................................... 340

22.8 Calculation of ? by Thermodynamic Integration ................................................................341

References .......................................................................................................................................341

23. The Absolute Free Energy of Binding ........................................................................................ 343

23.1 The Law of Mass Action ..................................................................................................... 343

23.2 Chemical Potential, Fugacity, and Activity of an Ideal Gas............................................... 344

23.2.1 Thermodynamics .................................................................................................. 344

23.2.2 Canonical Ensemble.............................................................................................. 344

23.2.3 NpT Ensemble ....................................................................................................... 345

23.3 Chemical Potential in Ideal Solutions: Raoult's and Henry's Laws ................................... 345

23.3.1 Raoult's Law ......................................................................................................... 346

23.3.2 Henry's Law .......................................................................................................... 346

23.4 Chemical Potential in Non-ideal Solutions ......................................................................... 346

23.4.1 Solvent ................................................................................................................... 346

23.4.2 Solute ..................................................................................................................... 347

23.5 Thermodynamic Treatment of Chemical Equilibrium ....................................................... 347

23.6 Chemical Equilibrium in Ideal Gas Mixtures: Statistical Mechanics ................................ 348

23.7 Pressure-Dependent Equilibrium Constant of Ideal Gas Mixtures .................................... 349

23.8 Protein-Ligand Binding ...................................................................................................... 350

23.8.1 Standard Methods for Calculating ?A0 .................................................................352

23.8.2 Calculating ?A0 by HSMD-TI .............................................................................. 354

23.8.3 HSMD-TI Applied to the FKBP12-FK506 Complex: Equilibration ................... 356

23.8.4 The Internal and External Entropies..................................................................... 357

23.8.5 TI Results for FKBP12-FK506 ............................................................................. 360

23.8.6 ?A0 Results for FKBP12-FK506 .......................................................................... 360

23.9 Summary ............................................................................................................................. 362

References ...................................................................................................................................... 362

Appendix ............................................................................................................................................... 367

Index ...................................................................................................................................................... 369
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Structural Biology;Partition Function;MC;Ising Model;Free Energy;FEP;NVT Ensemble;Ti;Helmholtz Free Energy;Absolute Entropy;Free Energy Difference;Ideal Chain;Local Equilibrium Hypothesis;Canonical Ensemble;Absolute Free Energy;Ideal Gas;Boltzmann Probability;Heat Bath;Detailed Balance Condition;Grand Canonical Ensemble;MD Simulation;Entropy Production;Intermediate Flexibility;Entropy Functional;Minimum Entropy Production