Beginner's Guide to Medical Application Development with Deep Convolutional Neural Networks

Beginner's Guide to Medical Application Development with Deep Convolutional Neural Networks

Biswas, Snehan; Mukherjee, Amartya; Dey, Nilanjan

Taylor & Francis Ltd

12/2024

184

Dura

9781032589275

Pré-lançamento - envio 15 a 20 dias após a sua edição

Descrição não disponível.
1. Introduction to Medical Data and Image Analysis 2. The Convolutional Neural Network 3. The Detection of COVID-19 Pneumonia Using Inception V3 and Custom Designed Bi-Modal Looping DCNN via Analysis of X-Ray Images 4. Detection of Pneumonia from a Small-Scale Dataset of X-Ray Images of Lungs by Using a Compound Batch-Normalizing Convolutional Neural Feature Extracting Random Forest Classifier 5. An Adaptive Profound Transfer Learning Strategy for Malaria Cell Parasite Classification and Detection 6. Implementation of a Deep Convolutional Auto-Encoding Image-Reconstruction Network (DCARN) to Visualize Distinct Categories of COVID-19 and Pneumonia X-Ray Image Features 7. Super Resolution Generative Adversarial Neural Network (SR-GANN) with Bi-Modal Multi-Perceptron Layers for Medical X-Ray Images 8. Conclusion
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
DCNN;Deep Transfer Learning System;Pneumonia;X-Ray Images;DCARN;SR-GANN